Simulation of transient fluid flow in mold region during steel continuous casting
نویسندگان
چکیده
A system of models has been developed to study transient flow during continuous casting and applied to simulate an event of multiple stopper-rod movements. It includes four sub-models to incorporate different aspects in this transient event. A three-dimensional (3-D) porous-flow model of the nozzle wall calculates the rate argon gas flow into the liquid steel, and the initial mean bubble size is estimated. Transient CFD models simulate multiphase flow of steel and gas bubbles in the Submerged Entry Nozzle (SEN) and mold and have been validated with experimental data from both nail dipping and Sub-meniscus Velocity Control (SVC) measurements. To obtain the transient inlet boundary conditions for the simulation, two semi-empirical models, a stopper-rod-position based model and a metal-level-based model, predict the liquid steel flow rate through the SEN based on recorded plant data. Finally the model system was applied to study the effects of stopper rod movements on SEN/mold flow patterns. Meniscus level fluctuations were calculated using a simple pressure method and compared well with plant measurements. Insights were gained from the simulation results to explain the cause of meniscus level fluctuations and the formation of sliver defects during stopper rod movements.
منابع مشابه
Mathematical Simulation for the Effects of Flow Control Devices in a Six- strand Tundish in Continuous Casting of Steel Billet
The method of continuous casting of steel is now often used in the metallurgical industry, due to the increasing demand for the production of high – quality steel. An important device of continuous casting machine is the tundish, in which a stabilized steel flow has a crucial effect on the quality and efficiency conditions of the continuous casting process. In this study fluid flows in a six – ...
متن کاملTransient Fluid-Flow Phenomena in the Continuous Steel-Slab Casting Mold and Defect Formation
Phenomena associated with the turbulent flow of molten steel in a continuous casting mold are responsible for many defects in the final product, including surface slivers, frozen meniscus hooks, captured inclusions that enter the mold from upstream, and mold slag entrapment. Animations of some of these transient flow phenomena are presented from Large-Eddy Simulations of a typical slab caster w...
متن کاملTransient Fluid Flow during Steady Continuous Casting of Steel Slabs: Part I. Measurements and Modeling of Two-phase Flow
Unstable mold flow could induce surface velocity and level fluctuations, and entrain slag, leading to surface defects during continuous casting of steel. Both argon gas injection and ElectroMagnetic Braking (EMBr) greatly affect transient mold flow and stability. Part I of this two-part article investigates transient flow of steel and argon in the nozzle and mold during nominally steady-state c...
متن کاملTransient Thermo-fluid Model of Meniscus Behavior and Slag Consumption in Steel Continuous Casting
The behavior of the slag layer between the oscillating mold wall, the slag rim, the slag/liquid steel interface, and the solidifying steel shell, is of immense importance for the surface quality of continuous-cast steel. A computational model of the meniscus region has been developed, that includes transient heat transfer, multi-phase fluid flow, solidification of the slag, and movement of the ...
متن کاملTransient Fluid Flow and Superheat Transport in Continuous Casting of Steel Slabs
The turbulent flow of molten steel and the superheat transport in the mold region of a continuous caster of thin steel slabs are investigated with transient large-eddy simulations and plant experiments. The predicted fluid velocities matched measurements taken from dye-injection experiments on full-scale water models of the process. The corresponding predicted temperatures matched measurements ...
متن کامل